
ARTIFICIAL NEURAL NETWORKS

Federico Marini

Dept. Chemistry, University of Rome “La Sapienza”, Italy

Artificial neural networks (ANNs)

Marini - ChemSchool2022

Historical background

• 1943: McCulloch & Pitts model of a neuron

• 1949: Hebb postulates a learning rule

• 1958: Rosenblatt model of a neural net

• 1969: the book “Perceptrons” freezes most of the

initial enthusiasm about ANNs

• 1982: Hopfield and its model of neural net act as

“catalyst” in attracting the attention of many

scientists towards NNs

Marini - ChemSchool2022

1 4 28 148
367

1615

2509

3577

4643
4780 4916

0

1000

2000

3000

4000

5000

1982 85-86 89-90 93-94 97-98 2001-

2002

ANN papers published: 1982-2002

J. Hopfield, Neural Networks and Physical Systems with Emergent Collective

Computational Ability, P. Nac. Acad. Sci. Biol., 79(2), (1982), 2554-2558

Marini - ChemSchool2022

Strengths of a Neural Network

• Power: Model complex functions, nonlinearity built
into the network

• Ease of use:
– Learn by example

– Very little user domain-specific expertise needed

• Intuitively appealing: based on model of biology,
will it lead to genuinely intelligent computers/robots?

Neural networks cannot do anything that cannot be
done using traditional computing techniques, BUT
they can do some things which would otherwise be

very difficult.

Marini - ChemSchool2022

The roughest approach to NNs

Marini - ChemSchool2022

NNs in a nutshell

• From a computational point of view, ANNs represent a way to

operate a non-linear functional mapping between an input and

an output space.

)(xy f

• Y can be:

• an n-D (usually 2D) vector of coordinates (mapping)

• A multi-dimensional vector of response (regression)

• A binary vector of class-memberships (classification)

• This functional relation is expressed in an implicit way

Marini - ChemSchool2022

Opening the blackbox

• The peculiarity of ANNs relies on the fact that they

operate using a large number of parallel connected

simple arithmetic units (neurons).

• Mathematically, a neuron can be defined as nonlinear,

parameterized, bounded function  the variables this

function depends on are called the inputs of the neuron

and its value is called the output.

)wxw(fy ii i 0 

Marini - ChemSchool2022

Artificial neurons

Nonlinear generalization of the McCullogh-Pitts
neuron:

),(wxfy 

y is the neuron’s output, x is the vector of inputs,
and w is the vector of synaptic weights.

Examples:

2

2

2

||||

1

1

a

wx

axw

ey

e
y

T











sigmoidal neuron

Gaussian neuron

Marini - ChemSchool2022

Artificial neurons),(wxfy 

Marini - ChemSchool2022

𝑥1

𝑥2

𝑥3

𝑥4

𝑤1

𝑤2

𝑤3

𝑤4

+1

𝑤0

𝑦
Σ

𝑠 = 𝒘𝑇𝒙

ℱ
𝑦 = 𝑓(𝑠)

-1

-0.8

1.5

-0.6

-0.4

1

-0.2

1.5

0

y

0.5

0.2

1

0.4

x
2

0

0.6

0.5

0.8

x
1

0

1

-0.5
-0.5

-1
-1

-1.5 -1.5

Activation functions

Hard threshold

Piecewise linear

Sigmoid

Marini - ChemSchool2022

From the neuron to the net
• Just as a neuron can be thought as a nonlinear function of

its inputs, a network represents the composition of the
nonlinear functions of two or more neurons

• The way the different units are connected among each
other governs the way the different functions they
describe are weighted and combined to produce the
overall output.

• This pattern of interconnection among the neurons is
called the network “architecture”, and can be
conveniently represented on a graph: neurons operating
on the same input variables are organized in layers, while
the weights that modulate the combination of the
nonlinear functions are represented as lines connecting
units in different layers.

Marini - ChemSchool2022

Artificial neural networks

In
p
u
ts

Output

An artificial neural network is composed of many artificial neurons
that are linked together according to a specific network
architecture. The objective of the neural network is to transform
the inputs into meaningful outputs.

Marini - ChemSchool2022

Artificial (multilayer feed-forward) NNs

In
p
u
ts

OutputHidden

       


h ih N

k j

N

i kikijk

N

k jkjkj wwxwfwgwhwgy
1 01 01 0

Marini - ChemSchool2022

Artificial neural networks

Marini - ChemSchool2022

-10
2

0

2

s=sum(wTx)

10

10

0-1-2 -2

0
2

1

2

h=tanh(s)

10

2

0-1-2 -2

-5
2

0

210

5

0-1-2 -2

0
2 210

0.5

0-1-2 -2

2
2

4

210

6

0-1-2 -2

2
2

4

210

6

0-1-2 -2

-10
2

0

210

10

0-1-2 -2

0
2

5

210

10

0-1-2 -2

-2
2

0

210

2

0-1-2 -2

0
2

1

210

2

0-1-2 -2

1
2

1.5

210

2

0-1-2 -2

1
2

1.5

210

2

0-1-2 -2

-5
2

0

210

5

0-1-2 -2

0
2 210

5

0-1-2 -2

220 0

1

y=tanh(w
2

Th)

0

-2 -2

-1

How does a neural network learn?

• A neural network learns by determining the relation
between the inputs and outputs.

• By calculating the relative importance of the inputs and
outputs the system can determine such relationships.

• Through trial and error the system compares its results
with the expert provided results in the data until it has
reached an accuracy level defined by the user.

– With each trial the weight assigned to the inputs is changed
until the desired results are reached.

Marini - ChemSchool2022

Multilayer feed-forward networks

• The most common network architecture is the feed-
forward one, in which the information flows only in the
forward direction, from inputs to outputs.

• This means that its graph representation is acyclic: no
path in the graph, following the connections, can lead
back to the starting point.

• A great variety of network topologies can be imagined,
under the sole constraint that the graph of connections
be acyclic. However, as anticipated before, the vast
majority of neural network applications implement
multilayer networks.

Marini - ChemSchool2022

Multilayer feed-forward NNs 2

• Neurons are organized in three kind of layers: input, hidden and output.

• The output neurons are the neurons that perform the final computation, i.e., whose

outputs are the outputs of the network, while the other neurons, which perform

intermediate computations, are termed hidden neurons.

• The units of the input layer just pass the inputs as variables to the hidden neurons,

without doing any processing on them.

• Each output is a nonlinear function (computed by the corresponding output

neuron) of the nonlinear functions computed by the hidden neurons.

In
p
u
ts

OutputHidden
The network computes

as many functions of

the input variables of

the network as are the

components of the

output vector

       


h ih N

k j

N

i kikijk

N

k jkjkj wwxwfwgwhwgy
1 01 01 0

Marini - ChemSchool2022

“Training” the net
• A feed-forward network with a single hidden layer can

approximate with arbitrary accuracy any bounded and
sufficiently regular function in a finite region of variable
space.

• The procedure by whereby the parameters of the network
are estimated, in order to approximate such a function is
called training of the ANN.

• Since usually the nonlinear relationship between dependent
and independent variables is not known analytically, but a
finite number of numerical values of the function are known
(because they are obtained through measurements
performed on a physical, chemical, biological, etc. process):
the task that is assigned to the network is that of
approximating the regression function of the available data.

Marini - ChemSchool2022

Supervised training
• This kind of training is referred to as “supervised” since the

function that the network should implement is known in some
or all points: a “teacher” provides “examples” of values of the
inputs and of the corresponding values of the output,

• The goal of the training algorithm is to find the best set of
model parameters, given the data  find the numerical
values of the network weights which minimize a cost function
representing the distance between the prediction of the
model and the measured values.

Marini - ChemSchool2022

Supervised training
• When this cost function is the squared error of the residuals:

• the resulting training algorithm is called back-propagation
(BP) and is essentially an iterative weight update on the
basis of a steepest descent criterion.

)1()(



 tw

w

E
tw ji

ji

ji 

Marini - ChemSchool2022

More on backpropagation

Weight update rule

Output neurons

Hidden neurons

Marini - ChemSchool2022

Second order methods

Marini - ChemSchool2022

• Backpropagation is rather simple and easy to implement but
can suffer from sever convergence problems.

• One way of coping with this is momentum.

• Another is to use second-order methods.

• Given an initial estimate of the weights, the error is Taylor-
expanded up to the second order:

• where:

• Backpropagation corresponds to truncating the expansion to
the first order.

Second order methods - 2

Marini - ChemSchool2022

• Based on the second order expansion, solution is sought by
differentiating the previous equation wrt to the weights and
setting the derivative = 0 (Newton’s method)

• Problems:
– Hessian matrix H should be calculated and stored (computationally and

memory intensive).

– Hessian matrix should be nonsingular (not guaranteed, quite often H is
not full rank).

• Solutions:
– Quasi-second order methods:

• Gauss-Newton

• Levenberg-Marquardt

Levenberg-Marquardt method

Marini - ChemSchool2022

• In Gauss-Newton, the Hessian matrix is approximated by:

• However, this approximation is accurate only near the minimum
and can suffer from initial guesses far from the optimal solution.

• LM method introduces an additional term to stabilize the
estimate:

• The parameter μ controls the property of the algorithm:
– When μ is large the steepest descent term is dominant

– When μ is small the Gauss-Newton term is dominant

• Fast and efficient

Specifically for classification

• When ANNs are used for classification:

– Error criterion is cross-entropy instead of RMSE

– Output function is “softmax”

ECE = yij ln
yij

ŷij
j=1

M

å
i=1

N

å

ŷj =
e
t j

etk
k=1

M

å

Marini - ChemSchool2022

Generalization vs specialization

• Optimal number of hidden neurons

– Too many hidden neurons: you get an over fit,

training set is memorized, thus making the

network useless on new data sets

– Not enough hidden neurons:

network is unable to learn problem concept

~ conceptually: the network’s language isn’t able

to express the problem solution

Marini - ChemSchool2022

Marini - ChemSchool2022

Generalization vs. specialization 2

• Overtraining:

– Too much examples, the ANN memorizes the examples

instead of the general idea

• Generalization vs. specialization trade-off:

hidden nodes & training samples

Marini - ChemSchool2022

RADIAL BASIS FUNCTIONS - NN

Marini - ChemSchool2022

The RBF-NN
• Differently from MLP, RBF-NN performs classification and

regression based on similarity with examples from the training

set

• Its basic unit is the Gaussian (RBF) neuron:

y= e
-
xi -ck

2

2s 2

= e
-b xi-ck

2
ck is the center of the kth RBF

Marini - ChemSchool2022

The RBF-NN for classification

yj = wjke
-b xi-mk

2

k=1

nRBF

å

There is the need to optimize the center and width of RBFs and the weights wjk

x
i

y1

yc

wck

w11

Marini - ChemSchool2022

Training the RBF-NN
• There are many different training algorithms for RBF-NN

• Apart from backpropagation, the most common are Orthogonal

least squares and the following:

1. Select the RBF centers by k-means clustering (possibly,

applying clustering separately by category)

2. Calculate the RBF width as the mean cluster distance to

the centroid:

1. Calculate the weight by LS regression:

s k =
1

m
xi - mki=1

m

å and bk =
1

2s k

2

W =H†Y with hik = e
-bk xi-mk

2

Marini - ChemSchool2022

The RBF-NN for regression

y= wke
-b xi -mk

2

k=1

nRBF

å

There is the need to optimize the center and width of RBFs and the weights wjk

x
i

y

wk

w1

Marini - ChemSchool2022

Training the RBF-NN for regression
• The training algorithms for regression are the same as for

classification, with two main differences:

1. The width of the RBF is normally selected as equal for all

nodes and based on cross-validation instead as on

clustering.

2. The output of the function is often scaled (normalized):

y=
wke

-b xi-mk
2

k=1

nRBF

å
e
-b xi -mk

2

k=1

nRBF

å

Marini - ChemSchool2022

Self organizing maps

(Kohonen architectures)

Marini - ChemSchool2022

In the case of Kohonen neural networks the

objects Xs and the arbitrarily distributed points

Wj are, first, assigned to each other, and next,

the points Wj with associated closest objects

{Xs} are pooled together to predefined

positions in a 2-D plane.

Xs

x1

x2

x3

The objects Xs are adjusted according to an

absolute distance measure d(Xs,Wj) to

positions of the prespecified points Wj

distributed in a topologically predefined

scheme.

Relative distance measure

The final result does not depend much on the distances between objects, but rather on the

distances between the objects Xs and the pivot points Wj.

Wj

W’j

Marini - ChemSchool2022

Kohonen self organizing maps (SOMs)

• The implicit functional relation that we want to approximate is a

nonlinear mapping from an Ni-dimensional input space to a low-

dimensional (usually 2D) discrete coordinate space (the map).

• Since there is no desired response to be obtained, training

occurs by self-organization, i.e. a Kohonen network adapts itself

so that similar input objects are associated with topological

close neurons.

• In a self-organizing map, the target space used in Kohonen

mapping is a two-dimensional array of neurons (the Kohonen

layer or top-map), fully connected to the input layer, onto which

the samples are mapped.

• Introducing the preservation of topology results in specifying for

each node in the Kohonen layer a defined number of neurons as

nearest neighbors, second-nearest neighbors and so on.

Marini - ChemSchool2022

x1 x2 x3 x4

x1

x2

x3

x4

y1 y2 y3 y4 y5 y6 y7

The most important feature of the Kohonen neural network is the topological order in which the neurons are combined together into the network.

The lay-out of neurons in the Kohonen

network can be linear (all neurons in one

row ot line) or planar (in a rectangular or

hexagonal lay-out).

x1

x2

x3

x4

y11 y12 y13 y14 y15 y16 y17

y21 y22 y23 y24 y25 y26 y17

y31 y32 y33 y34 y35 y36 y37

y41 y42 y43 y44 y45 y46 y47

y51 y52 y53 y54 y55 y56 y57

y16 y62 y63 y64 y65 y66 y67

y17 y72 y73 y74 y75 y76 y77

x1 x2 x3 x4

y11 y12 y13 y14 y15 y16 y17

y21 y22 y23 y24 y25 y26 y17

y31 y32 y33 y34 y35 y36 y37

y41 y42 y43 y44 y45 y46 y47

y51 y52 y53 y54 y55 y56 y57

y16 y62 y63 y64 y65 y66 y67

y17 y72 y73 y74 y75 y76 y77

y74
y63 y75

y52 y64 y76
y41 y53 y65 y77

y42 y54 y66
y31 y43 y55 y67

y32 y44 y56
y21 y33 y45 y57

y22 y34 y46
y11 y23 y35 y47

y12 y24 y36
y13 y25

y14

Kohonen self organizing maps 2

Marini - ChemSchool2022

4

3

2

1

1

2

3
4

3

2

1

0

1

2

3

4

3

2

2

2

3

4

5

4

3
33

3

3

4

5

4

3

2

1

1

2

3

4

4

3

2

2

2

3

4

5

4

3

3

3

3

4

5

5

4

4

4

4
34

5

5

5

4

4

4

4
34

5

5

5

5

5

5

5

45

5
35

5

5

5

5

5

5
545

5
5

5
5

1

1

1

11 1

1

1 2

2

2

2 222

3 3 3

3

3

3

33

3

2 2 2 2

3 3 33

3

3

0

4 4 4 4

5 5 55

4

5

5 5 5 5

4 4 44

5

4

2

3

3

3

2

2

2

2

3

3

3

3

3

3

4

5

4

5

5

4

5

4

4

4

5

5

4

4

4

4

4

5

5

5

5

5

4

5

5

5

5

4

5

5

5

5

4

4

5

5

5

5

5

4

4

4

4

4

5

5

4

5

5

5

5

4

The neighborhood of a neuron is usually considered to be square or hexagonal

which means that each neuron has 8 or 6 nearest neighbors respectively.

x1

x2

x3

x4

y1 y2 y3 y5 yn

3 2 1 0 1 2 3

3 2 1 0 1 2 3

4

3

2

1

1

3

2

1

0

1

4

3

2

2

4

3

2

1

1

2

4

3

2

2

2

5

4

3

3

3

5

4

4

4

54
3

5

1

1

1

11 1

1

1 2

2

2

2 222

3

3

3

3

2 2 2 2

3 3 33

3

3

0

4 4 4 4 4

5

5

4

4

5

5

5

54

4

4

4

54

Defining the neighborhood

Marini - ChemSchool2022

x1

x2

x3

x4

y1 y2 yj yn

0 1 2 3 … … 3 2 1 0

yn y1

y2

y3

yn-1

x1

x2

x3

x4

The cyclic and the toroid boundary conditions. The edge one one side

is linked to the edge on the opposite side.

d

c

Cyclic conditions in a line of

neurons: 1st neighbours of W1

are W2 and Wn

a

b

c

d

Toroid conditions in

a rectangular plane

of neurons: 1st

neghbours of

neurons on edges a

and c are neurons

on edges b and d

respectively.

Cyclic and toroid conditions

Marini - ChemSchool2022

The consideration of the toroidal conditions in Kohonen neural

networks can sometimes lead to much clearer results.

Cyclic and toroid conditions 2

Marini - ChemSchool2022

Learning procedure in Kohonen networks

1. selection of one neuron in the network according to a

prespecified criterion (largest response, most similar input Xs

to the neuron Wj, or similar),

2. correction of the weights of the selected neuron, and

3. correction of the weights of the neighbouring neurons up to a

specified range around the selected neuron.

Learning in the Kohonen neural network is iterative, i.e., a set of objects {Xs} is sent through the network several times.

After the pass of one object through the network the weights, which at the begining of learning are randomised, are changed. The learning procedure of a single pass consists of

three steps:

One pass of the entire data set through the network is called one epoch.

Training is stopped after a certain number of epochs. The main result of the Kohonen learning is the “top-map” or “self-organised map” (SOM) of objects

associated with the excited neurons.

Marini - ChemSchool2022

NNjallforwxWXd
m

i

jisijs 


...,,1)(),(
1

2

Step one: selection of the “excited”, “central”, or “responding” neuron. In large

majority of cases the selection of the neuron is made according to the smallest

distance criterion:

The “excited” or the

“selected” neuron”

x11

x12

x13

x14

W11 W12W13 W14W15 W16W17

W21W22W23W24W25W26W27

W31W32W33W34W35W36W37

W41W42W43W44W45W46W47

W51W52W53W54W55W56W57

W61W62W63W64W65W66W67

W71W72W73W74W75W76W77

Input
object

X1

x21

x22

x23

x24

W11W12 W13W14 W15 W16W17

W21W22W23W24W25W26W27

W31W32W33W34W35W36W37

W41W42W43W44W45W46W47

W51W52W53W54W55W56W57

W61W62W63W64W65W66W67

W71W72W73W74W75W76W77

Input
object

X2

Kohonen networks in practice

Marini - ChemSchool2022

Step two: correction of weights of the selected neuron We

d (We
new , Xs)

We=  (Xs-We
old)

We d(We , Xs)

We
ne

w
Xs

Because after each pass only one neuron is selected the leaning procedure is

called the “winner-takes-all” strategy.

The corrections We are driving the weights wei of the excited neuron We = (we1,we2,...wei...wem) closer to the variables xsi of object Xs = (xs1,xs2,...xsi,...xsm) that has excited

it.

The parameter η is called the learning rate and is in most applications “time” dependent, i.e. dependent on the number of currently performed learning epochs.

 = ( start -  final)(1 - nepoch/ntot) +
final

Kohonen networks in practice 2

Marini - ChemSchool2022

At the beginning of learning:

nepoch = 1  dmax = Nnet; correction

covers the entire network

At the end of the learning:

nepoch = ntot  dmax = 0; correction is

limited only to the

selected neuron We.

))(
1

1(
max

old

jisi

j

ji wx
d

d
w 


 

))(

1)1(

1(old
jisi

tot

epoch
net

j
ji wx

n

n
N

d
w 



 

Step three: correction of the weights in neurons Wj surrounding the selected neuron We

1

Wc
dmax dj

topological distance

a(dj)

)1(
1)(

max 

d

d
da

j

j

For the selected neuron a(dj) = 1 because dj = 0.

For the neurons separated dmax from the selected neuron We

the value a(dmax) is the smallest posible corection.

topological distance

a(dj)

1

Wc

1

Wc

1

Wc

a(dj) a(dj)

Various neighbourhood functions a(dj)

Kohonen networks in practice 3

 old

jisijji wx)d(aw 

Marini - ChemSchool2022

Input

object

Xs

x1

x2

x3

x4

x5

x6

x7

x8

Kohonen network

Correction of the weights in neurons Wj is applied to all levels of weights. Due

to the fact that weights wji in the neurons of the Kohonen network are alligned

into levels according to the order of input variables xi, each level of weights is

influenced only by one variable and thus forms a map of weight values or

weight map.

Weight level 2

Weight level 6

Individual weights

1
2
3
4
5
6
7
8

Weight levels

Weight maps

 old

jisijji wx)d(aw 

Marini - ChemSchool2022

Input object Xs (recipe for the paint-coat). Only

three variables are shown.

Solvent x1

Binder x2

Pigment x3
0.5

0.3

0.9

A

0.7
0.5 0.3

0.1

0.7
0.9

0.5

0.9
0.7

0.3

Top map showing the

cells containing the

information avout the

overal quality of the

paint-coat

Labels A, B, and C

refere to the excellent,

passable, and below

standard quality,

respectively.

A A A

A

A A

C C

C C C

C,BC C

C C C

C

C C C

B B B B

B B B B

B B

B

B

B

B A,C

A,C

.76 .85 .90 .93 .95 .97 .99

.63 .75 .84 .80 .85 .89 .95

.59 .66 .68 .65 .77 .75 .92

.32 .33 .52 .58 .60 .69 .85

.31 .43 .46 .42 .53 .61 .81

.16 .25 .30 .33 .46 .55 .75

.03 .09 .08 .22 .38 .50 .67

Weight map of the
variable x2 - normalised
binder concentration

The most important feature of the Kohonen network is the fact that all weights in all

neurons regardless whether they were excited during the trainng or not bear valuable

information.

Weight maps 2

Marini - ChemSchool2022

During the training the target values T

associated with each object X are input

into the output layer in exactly the same

manner as the objects X are input into the

Kohonen layer.

Output:

we1
output

we2
output

we3
output

we4
output

During the retrieval (prediction)

the weights wei
output in the output

or Grossberg layer selected by

the winning neuron of the input

object X (in the Kohonen layer)

are used as the predictions.

By the addition of an identical layer of weights to which the targets are input the Kohonen

network is transformed into the counterpropagation network.

The additional layer (the output or Grossberg layer) has the same number and the same layout

of neurons as the first (Kohonen) layer, however, in each layer the neurons have different

number of weights.

Grossberg or
output layer

Target T

t1

t2

t3

t4

G

x1

x2

x3

x4

x5

x6

x7

x8

Kohonen

layer

Input X

K

The winning

neuron We

Counterpropagation networks

 old,K

jisij

K

ji wx)d(aw 

 old,G

jisij

G

ji wt)d(aw 

Marini - ChemSchool2022

Response Y

y = 0.9
0.9

0.7

0.5

0.3
0.1

Direct model

0.7

0.5

0.3

0.1

0.10.9

Input X

x1 = 0.8

x2 = 0.2

x3 = 0.6

Grossberg or

output layer

Target T

t1

x1

x2

x3

Kohonen

layer

Input X
The winning

neuron We

Each counterpropagation network can be used as a direct and as an inverse “model”.

Inverse model

0.7

0.5

0.3

0.1

0.1
0.9

0.7

0.5

0.3
0.1

0.9

Input Y

y = 0.9 0.9

Output X

x1 = (0.45 - 0.95)

x2 = (0.00 - 0.30)

x3 = (0.30 - 0.70)

Counterpropagation networks 2

Marini - ChemSchool2022

• Counterpropagation networks are semi-supervised architectures, as the value of the Y vector doesn’t drive the selection of the winning neuron and, as a consequence,

the direction of the training.

• There are other proposed architectures that are truly supervised and that can be used to build classification models:

• Supervised Kohonen networks

• XY-fused network

• Bidirectional Kohonen networks

Supervised Kohonen architectures

Marini - ChemSchool2022

• X and Y variables are concatenated to train the network as in the standard Kohonen architecture.

• After training the two blocks are separated and prediction occur as in counterpropagation

Supervised Kohonen networks

Marini - ChemSchool2022

• The winning neuron is decided by considering a similarity function which is a weighted sum of the similarity in the X space and in the Y space.

• The parameter α starts with a high value and then decreases, so that at the end only similarity in the Y space contributes, while at the beginning the X space is

dominant.

XY-fused networks

Marini - ChemSchool2022

• The concept of BDK networks is similar to that of XY-fused, combining similarity in both spaces to update the weights.

• In BDK, however, X and Y weights are updated in an alternate fashion:

• The parameter α starts with a high value and then decreases, so in the beginning similarity in the Y space governs selection of the winning neuron in the X space while

similarity in the X spaces determines the minning neuron in the Y space.

Bidirectional Kohonen networks

Marini - ChemSchool2022

The fortunes and misfortunes of NNs

• Despite their increasing popularity up to the beginning of the
2000s, interest in neural networks seemed to vanish:
– Curse of dimensionality

– Inefficient learning algorithms

– Lack of interpretability of the models

– Performances heavily dependent on the choice of data representation (or
features) on which they are applied.

• Much of the actual effort in deploying machine learning algorithms goes into the
design of preprocessing pipelines and data transformations that result in a
representation of the data that can support effective machine learning

Marini - ChemSchool2022

Representation learning

• Learning representations of the data that make it easier to

extract useful information when building classifiers or other

predictors

– Captures the posterior distribution of the underlying explanatory

factors for the observed input.

– Is useful as input to a supervised predictor.

• DEEP LEARNING:

– composition of multiple non-linear transformations, with the goal of

yielding more abstract – and ultimately more useful – representations

• Fundamental questions:

– What makes one representation better than another?

– Given an example, how should we compute its representation, i.e.

perform feature extraction?

– What are appropriate objectives for learning good representations?

Marini - ChemSchool2022

Representation learning: “chemometric” concepts

• Representations → convenient to express many general (not task-

specific) priors that are likely to be useful for a learning machine to

solve AI-tasks.

• The revival experienced by NNs in the recent years has much to do

with such priors

– Their absence was one of the main reasons for the vanishing interest towards

NN in the 2000s

– They share much in common with essential ideas which make chemometric

representations useful and versatile

– Possibility of mutual benefit between the disciplines

• Some of these will be briefly discussed in the following

Marini - ChemSchool2022

The general priors of representation learning

• Smoothness:

– 𝑥1 ≈ 𝑥2 ⇒ 𝑓(𝑥1) ≈ 𝑓(𝑥2)

– Insufficient to circumvent the curse of dimensionality

• Multiple explanatory factors:

– Data distribution generated by different underlying factors

– What one learns about one factor generalizes in many configurations

of the other factors

– The objective is to recover or at least disentangle these underlying

factors of variation

• Hierarchy:

– The features that are useful for describing the world around us can be

defined in terms of other features, in a hierarchy

– More abstract concepts higher in the hierarchy are defined in terms of

less abstract ones → Deep learning

Marini - ChemSchool2022

The general priors of representation learning - 2
• Semi-supervised learning:

– A subset of the factors explaining X’s distribution explain much of Y,

given X.

– Representations that are useful for P(X) tend to be useful when learning

P(Y|X)

– Sharing of statistical strength between the unsupervised and supervised

learning tasks

• Manifolds:

– Probability mass concentrates near regions that have a much smaller

dimensionality than the original space where the data lives.

• Sparsity:

– For any given x, only a small fraction of the possible factors are relevant.

– Features that are often zero or insensitive to small variations of x.

– Priors on latent variables (peaked at 0), or by a nonlinearity whose value

is often flat at 0 (e.g., ReLU)

Marini - ChemSchool2022

Building deep representations

• Greedy layerwise unsupervised pre-training:

– Learn a hierarchy of features one level at a time, using unsupervised feature
learning to learn a new transformation at each level to be composed with the
previously learned transformations;

– The set of layers could be combined to initialize a deep supervised predictor,
such as a neural network classifier, or a deep Boltzmann Machine

Marini - ChemSchool2022

Two learning paradigms
• One rooted in probabilistic graphical models and one rooted in

neural networks.

• Probabilistic modeling:

– Attempt to recover a parsimonious set of latent random variables that

describe a distribution over the observed data.

– Feature values are conceived as the result of an inference process to

determine the probability distribution of the latent variables given the

data, i.e. p(h|x), the posterior probability.

• Main differences:

– The layered architecture of a deep learning model is to be interpreted as

describing a probabilistic graphical model or as describing a computation

graph?

– Are hidden units considered latent random variables or as computational

nodes?

Marini - ChemSchool2022

And two corresponding architectures

Marini - ChemSchool2022

• Convolutional NN • (Restricted) Boltzmann machines

Convolutional Neural Networks

Marini - ChemSchool2022

• Designed to process data that come in the form

of multiple arrays:

– a colour image composed of three 2D arrays

containing pixel intensities in the three colour channels.

– 1D for signals and sequences

• There are four key ideas behind ConvNets that take advantage of

the properties of natural signals:

– local connections

– shared weights

– pooling

– the use of many layers.

Convolutional Neural Networks

Marini - ChemSchool2022

• The architecture is structured as a series of stages.

• The first few stages are composed of two types of layers:
convolutional layers and pooling layers.
– Units in a convolutional layer are organized in feature maps, within which

each unit is connected to local patches in the feature maps of the previous
layer through a set of weights called a filter bank.

The convolutional Concept

Marini - ChemSchool2022

• Convolution extracts feature from the
input image (data)

• Preserves the spatial relationship
between pixels

And for multiple-layered inputs

Marini - ChemSchool2022

• Filtering proceeds in parallel across the depth of the image

Going nonlinear

Marini - ChemSchool2022

• A nonlinear operation is added on top of the convolution.

• Usually it is carried out by means of a Rectified Linear Unit (but one could also use,
sigmoid or hyperbolic tangent)

• ReLU is an element wise operation (applied per pixel to the activation maps) and
replaces all negative pixel values in the feature map by zero.

ℎ = max(0, 𝑠)

Compressing (Pooling)

Marini - ChemSchool2022

• Spatial Pooling reduces the dimensionality of each feature map but retains the
most important information.

• Can be of different types: Max, Average, Sum etc.

• Define a spatial neighborhood (for example, a 2×2 window) and:
– take the largest element from the rectified feature map within that window (Max pooling)

– Take the average (Average Pooling) or sum of all elements in that window

– Max Pooling has been shown to work better.

Compressing (Pooling) - 2

Marini - ChemSchool2022

• Pooling is applied separately to each feature map

• The function of Pooling is to progressively reduce the spatial size of the input
representation:
– makes the input representations (feature dimension) smaller and more manageable

– reduces the number of parameters and computations in the network, therefore,
controlling overfitting

– makes the network invariant to small transformations, distortions and translations in the input
image (a small distortion in input will not change the output of Pooling – since we take the
maximum / average value in a local neighborhood).

– almost scale invariant representation of our image (the exact term is “equivariant”)→detect objects
in an image no matter where they are located.

Wrapping up

Marini - ChemSchool2022

Marini - ChemSchool2022 1

Generative Topographic Mapping (GTM)

Eric Latrille – LBE –INRAE (France

GTM is a dimensionality reduction algorithm well described by Bishop et al.

Briefly speaking, the algorithm injects a 2D hypersurface (manifold) into an

initial Ddimensional data space. The manifold is fitted to the data distribution

by the ExpectationMaximization (EM) algorithm which minimizes the log-

likelihood of the training data.

Once the fitting is done, each item from the data space is projected to a 2D

latent grid of K nodes.

Bishop CM, Svensén M, and Williams CKI (1998) GTM: The Generative

Topographic Mapping. Neural Comput 10:215–234.

https://doi.org/10.1162/089976698300017953

Marini -

ChemSchool2022

2

GTM is a probabilistic extension of SOM where log-likelihood is utilized as an

objective function.

The manifold used to bind a data point t* in the data space and its projection

x* in the latent space is described by a set of M Radial Basis Function

centers (RBF; Gaussian functions are generally used).

