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The classification task

 Find a criterion to assign an object (sample) to one
category (class) based on a set of measurements performed
on the object itself

» Category or class is a group of objects sharing similar
characteristics

* In classification categories are defined a priori (Supervised
Methods™)

« * Clustering can highlight the presence of categories but does
not use class membership as a criterion (unsupervised)
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Context - General concepts

General steps in Classification Task

Collect a representative set of samples for each category
[calibration set]

Measure for each sample some (many) features/descriptors that
can be good to characterise the different categories [classes]

Define Classification Rules that on the basis of the values of the
descriptors can decide class membership for each sample

Evaluate the performance of the classification model [calibration
/ internal validation]

Applicate the classification rules to “new” samples [test set]
Evaluate the goodness of predictions [validation]



Context - General concepts

Critical Issues

—> Collect a representative set of samples for each category

[calibration set]  wae Representativeness of sampling

—> Measure for each sample some (many) features/descriptors
that can be good to characterise the different categories

classes] =P Efficacy of descriptors

—> Define Classification Rules that on the basis of the values of
the descriptors can decide class membership for each

sample _ _
=P Classes imbalance, Outliers



Context - General concepts

Classification Methods
Many methods are available and a distinction among them can be
made according to different criteria:

1. A first one is between the methods which:
focus on discrimination among the classes > discriminant analysis

focus on modelling the single category > class modelling

2. A second is considering the nature/type of methods:
e based on distribution [probabilistic]

> Parametric: reference statistical distributions (mean, variance,..)
[LDA, QDA,.]

> Non-Parametric: density of grouping [potential functions]
e based on distances: > between objects [e.g. KNN]

> to class model [e.g. SIMCA]
e based on “try and correct procedure” [automatic learning, eg.

ANN, Decision Tree]



Context - General concepts
Classification Methods

Many methods are available and a distinction among them can be
made according to different criteria:

3. A third one iIs between
> linear (e.qg. LDA, PLS-DA, SIMCA)

> non-linear (e.q. ANN, KNN)
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In these cases classes are not linearly separable



Context - General concepts

Classification Methods

linear methods may be applied to “non-linear” separable classes if

> data are first mapped by non linear Kernel, e.q. Euclidean

distances, Gaussian, efc...
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Context - General concepts

Classification Methods

linear methods may be applied to “non-linear” separable classes if

> linear methods are applied locally, e.qg. Locally Weighted PLS-DA!"!

e among the calibration samples find the Ni nearest
neighbours to the sample to be assessed

e use only these Nineighbours to build the model
(weights are applied on the basis of distance)

e predict the sample

[1] M. Bevilacqua, F. Marini / Analytica Chimica Acta 838 (2014) 20-30




Discrimination

Discriminant classification

0 The discriminant methods implicitly or explicitly try to identify the
boundaries which separate the different classes in the multidimensional space.

0 The corresponding outcome is always the classification to one of the C
available categories [classes].

P All classes information used

Var 2
]

Var 1




+ MODELLING AUTHENTICITY

Class Modelling eg: SIMCA, UNEQ

Focus on looking for similarities among
samples belonging to the same class.
Each category is modelled individually.

Discrimination — limits of applicability

Discriminant classification eg: LDA, PLS-DA

Discriminant methods aim at identifying
the boundaries which separate the

| different classes in the multidimensional

<

»single class information is used

»e.g. use in authentication task, assessment

of compliance

» other/others class/es information always

» NOT appropriate to contrast a “category”
from the rest



Discrimination - Class Modelling

The Discriminant approach to classification

* Class boundaries are built to minimise classification error:
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total classification error:
% of wrongly assigned samples
over all classes
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The classification rule which minimises E is the so-called Bayes’ rule:

“a sample is assigned to the class to which it has the maximum probability of
belonging”




Discrimination - Class Modelling

The Discriminant approach to classification

 Probability is defined as:
@Trior probability = 1/number of classes

: - ( ) B ]?gf(xi|g) probability distribution of x for
posterior probability |+— P\&|X;) = samples of class ¢
> B (x[K)

1

normalisation factor

Probabilistic method make assumption on f(x/g), which is derived from the reference
distribution function, e.g. Linear and Quadratic Discriminant analysis assume
a Multivariate Gaussian

f(xi|g):

(zn)p/i_ 172 mpl:_%(xi _ig)TS:gl(Xi _ig)]

Sg

discriminant methods may differ in the way of defining and estimating probabilities.
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Discrimination - Class Modelling
iris data set: 3 classes
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Discrimination - Class Modelling

The Discriminant approach to classification
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Discrimination - Class Modelling

Possible solution:

Rebalance the data Imbalanced Data

Under-sampling , \ Qver-sampling
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Discrimination - Class Modelling

Performance Measures

« One way of summarizing the discriminant classification results
IS the so-called “confusion matrix”.
diagonal elements:

redicted e
e o ;assz gy TP (true posmv?)
, classi [40}95.24%) [2](4.76%) 0 (0.00%) [TN (true negative)]
2 class2  [[1]2.63%) 35(92.11%) [2](5.26%) extra-diagonal elements:
e L 3|(10.71%) | 25((89.29%) FN (false negative for “true”)

+ %Non-error rate (%NER) or %Correct classification rate FP (false positive for “predicted

(%CCR):

G
n

%NER(g) = £ 5100 %NER(tot) = =51 =™ » 100 = 100/108=92.6 %

ﬂ ’1g tot ’1”)!

« Sensitivity:
« % samples from class i, correctly classified as i
Class 1: 40/42 (95.24%); Class 2: 35/38 (92.11%); Class 3: 25/28 (89.29%)

« Specificity:
« % samples from class #i, correctly classified as not i.
Class 1: 65/66 (98.48%); Class 2: 65/70 (92.86%); Class 3: 78/80 (97.50%)



Discrimination - Class Modelling

Performance Measures
to asses overall performance

CLASS MODELLING

Efficiency = \/(Sensitivity*Specificity)

Discriminant Classification

A sample is always assigned to one of the modelled classes

--> Sensitivity and Specificity are not independent

% Correct Classification Rate (% CCR)



Discrimination - Class Modelling

LDA shares the same limitations/assumptions of MLR

Needs more objects than
LDA variables!
| Independent variables
| X variables are exact
| residual are normal

Possible Solution:

' To overcome this limitation data reduction can be operated before
applying discriminant analysis, e.g. by using principal component analysis,
or reformulating the discriminant classification problem in regression terms
as in extended canonical variate™ (ECVA) or in Discriminant PLS

* ECVA utilizes Partial Least Squares regression as an engine for solving an eigenvector problem
involving singular covariance matrices.



Classification based on LV: Discriminant PLS

Discriminant PLS (DPLS, PLS-DA)

1. Regression on dummy variables Common Frame

Y coding: as many dummy y-variables (1/0) as classes
Fit a PLS2 model

Predict Y values for future/unknown sample Y =XB

2. Classification rules
True Discriminant  (DPLS)

» Predict the dummy values (Yi pred) and assign the object to the group
with highest predicted value, k = argmax(Yi_pred)*

»Use LDA, QDA, etc.. on PLS scores or Yi pred (not redundant, i.e. n° classes -1)

*with more than 2 categories can be sub-optimal (masking effect Hastie )
Hybrid (if more than 2 categories)

» Define an acceptance threshold on the basis of predicted the values (Yi pred)

"Hastie T. et al. The element of statistical learning, Springer: New York,2001



Classification based on LV: Discriminant PLS

» Classification is accomplished through regression of X
against a binary matrix containing class-membership
information

Training spectra Class index Class Yvector
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Classification based on LV: Discriminant PLS

Regression on dummy variables (DPLS, PLS-DA)

Y coding: as many dummy y-variables as classes 1/0

Class index Class Yvector

Fit a PLS2 model

------------- P . " -
X T o ’.. U Y
°® ta
............ w
X=TP"+ E U=>bT Y=UQ"+F

B; s = W(PTW)1diag(b)Q i/= XByp, 5




Classification based on LV: Discriminant PLS

* Predicted y is real-valued:

“true”y predicted y
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Possible Classification rules
True Discriminant

« Sample is assigned to the class corresponding to the
highest y component - Class 3

xunknown yunknown

Hybrid

¢ \When there are only two classes, threshold is set at 0.5

- A Y-predicted threshold value is defined for each class
which minimise the CV classification error



Classification based on LV: Discriminant PLS

|.dimensionality (How many PLS components )?
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Classification based on LV: Discriminant PLS

VIP scores for Y1 (Grasparossa)

(b)

o Interpreting Variable importance
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Data set

Animal Feed (flour):
bovine (45)
fish (43)
chicken (45)

Classification based on LV: Discriminant PLS

an Example

MIR spectroscopy

after drying

FT-MIR (850 — 1250 cm'1);

Preprocessing: mean

center;

Scores on PC 2 (8.63%)
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Explorative PCA results
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Scores on PC 1 (86.44%)

Aim

Assessing the animal species of the

feed flour
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Classification based on LV: Discriminant PLS

T T T T T T T T
—+— CV Classification Error 1
—+— CV Classification Error 2

CV Classification Error 3

4 6 8 10 12 14 16 18 20

Latent Variable Number

3(4)LVs
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CV Classification Error Average, Cal. Classification Error Average
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Animal Feed (flour):
bovine (45)
fish (43)

—+— Cal. Classification Error Average
—+— CV Classification Error Average

10 12 14 16 18 20
Latent Variable Number



Scores on LV 2 (7.78%)
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Classification based on LV: Discriminant PLS

Animal Feed (flour):

bovine (45)
3 LVs fish (43)

Bovine is not specific for chicken chicken (45)
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Classification based on LV: Discriminant PLS

How threshold is established

1-Specificity Y1 (Bovine)

’é‘ Predicted ROC
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0 0.5
Threshold (Y predicted)

Animal Feed (flour):
bovine (45)
fish (43)
chicken (45)
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Y Predicted 1 (Bovine), Y Predicted 2 (Chicken), Y Predicted 3 (Fish)

o
o

Classification based on LV: Discriminant PLS

Animal Feed (flour):
bovine (45)

max(Ypred) True discriminant fish (43)

chicken (45)

—O— Y Predicted 1 (Bovine)
—0— Y Predicted 2 (Chicken)
Y Predicted 3 (Fish)

¢ Bovine
= Chicken
A  Fish

o
T

20 40 60 80 100 120 140 160
Sample

Less missclassified
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Classification based on LV: Discriminant PLS

o Interpreting Variable importance
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Classification based on LV: Discriminant PLS

Implementation in Software

- Y coding: as many dummy y-variables as classes 1/0 Common Frame
- Fit a PLS2 model
» UNSCRAMBLER: Classification rule

Hard Threshold on Y-predicted values
y-predicted >= 0.5 (confidence limits for y-prediction are shown in plot)

It is also suggested to the user to use LDA on PLS scores
» SIMCA-Umetrics:

Hard Threshold on Y-predicted values
y-predicted <0.35 reject;
y-predicted 0.35-0.65 border-line;
y-predicted 0.65-1.35 accept;

y-predicted >1.35 do not belong, possible extreme/outlier
Options for class assignation
Given the rule above objects can fit one class, more than one class or none, then:

Unique assignation: sample assigned to the nearest class in term of lower probability

Multiple assignation: sample assigned to all the classes for which the threshold criterion is
passed



Classification based on LV: Discriminant PLS

Implementation in Software

» PLS-toolbox: Classification rule
Threshold on Y-predicted values (can be in fit or in CV) considering each predicted y’s

independently.
Bayesan threshold [Computed using the distribution of calibration-samples Y-predictions (can
also be in CV)]:

1. For each class separately fit a Gaussian to the y-predicted data of the class and a Gaussian to the
y-predicted data of the rest of samples (all other categories).

2. The Threshold corresponds to the minimum overlap of the two gaussians.

3. Store as well the corresponding probabilities of belonging to the clasess (calculated form the
fitted Gaussians) for a given y-predicted value.

Options for class assignation

False negative (FN): objects of the class whose y-predicted is > of the threshold of the class

False positive (FP): objects NOT in the class but whose y-predicted is < of the threshold of the class.
Then assign according to one of the following:

mostprobable: sample assigned to the class for which the predicted probability value is higher

strict: sample is assigned to the class for which the y-predicted is higher than the threshold (Bayesan

threshold or fixed to 0.5). If the threshold rule is passed for more than one class the sample is not
assigned



