

PLS

Theory, Algorithm, Practical work

Marina Cocchi Dipartimento di Scienze Chimiche e Geologiche marina.cocchi@unimore.it

- Recall Regression
- What's PLS
- PLS in practice
- Algorithms (just a bit)
- Examples, Practical work

Linear Modeling

Linear modelling has been developed in "pre-computer" era (minor computational complexity)

Anyhow there are good reasons to use them "today":

- ✓ they are simple
- less prone to overfitting
- predictive capability can be better w.r.t non-linear, e.g. when data sets are characterised by limited number of samples, high noise, missing data
- They could be applied after data transformation to moderate non-linear raw data (eg: taking log)

•UNILINEAR

R ONE Y as a function of ONE X

Y
6
8
5
2

Want to find a general expression to obtain y from x We see that $3 \cdot b = 6$ easy to see that $4 \cdot b = 8$ b = 2

and so on ...

•UNILINEAR

xb

•UNILINEAR ONE Y as a function of ONE X

What about noise

a generic multilinear model (MLR):

 $y = bo + \Sigma_p D_p X_p$

where there are p variables and b_p are the "unknown" (the model parameters to be determined)

X :

- usually, the measured quantitative variables
- their transformations, eg. log, $\sqrt{,}$...
- dummy coding of qualitative variables
- may also include interaction (X1X2...) or quadratic (X1²...) terms

Regression

 $\mathbf{y} = \mathbf{b}_0 + \boldsymbol{\Sigma}_p^{\mathsf{N}} \mathbf{b}_p \mathbf{X}_p$

$$RSS = \Sigma_i (y_i - b_0 - \Sigma_p^P b_p x_{ip})^2$$

Matrix Notation

$$RSS = (y - Xb)^{T}(y - Xb)$$
Finding minimum RSS
$$\frac{\partial RSS}{\partial b} = -2X^{T}(y - Xb)$$
1. $X^{T}(y - Xb) = 0$
2. $X^{T}y - X^{T}Xb = 0$
3. $X^{T}Xb = X^{T}y$
4. $b = (X^{T}X)^{-1}X^{T}$

9

Geometric Interpretation

called also H it is a projection operator

FIGURE 3.2. The N-dimensional geometry of least squares regression with two predictors. The outcome vector y is orthogonally projected onto the hyperplane spanned by the input vectors x_1 and x_2 . The projection \hat{y} represents the vector of the least squares predictions

$\hat{\mathbf{y}}$ is orthogonal to $(\mathbf{y} - \hat{\mathbf{y}})$ and it lays in X space

11

AIMS

TO PREDICT the dependent variable/es TO INTERPRET the obtained functional relationship

To interpret the model it should necessary be statistical significant and validated

THEORETICAL Theory is verified

EMPIRICAL Local Approximation common latent factors

main MLR limitations

• X- variables collinearity

13

more samples than variables are needed

LV's based solutions

• Principal Component Regression (PCR)

PLS

- Considers y when decomposing x
- Can handle multiple y (Y) simultaneously

PLS strikes a compromise among explaining X and correlation with y

To find a direction of maximal covariance (X,y) a vector of weights *w* is defined component wise

(c1 t1 + c2 t2 + ...)

Criterion: find a w such as:

max [cov(t,y)| Xw=t and ||w||=1]

PLS

х,

0

What's PLS 2

- Each sample is a point both in ٠ X and Y space
- the axes origin is in the average of X and Y (mean centering of X e Y)

Projection of observation i

Y34

00

covariance between scores in X (\mathbf{t}_1) and scores in $\mathbf{Y}(\mathbf{u}_1)$ is maximized component wise

+ y2

• each X (n x j) and Y (n x k) matrices defines a space in j and k dimensions respectively

• eg. 2 PLS components define a plane both in X and in Y

t2 is orthogonal (90°) to t1 while it is not necessarily so for u2 and u1

PLS implementation

PLS is iterative e.g. NIPALS for first LV

At convergence:

Take u start as the single y with max variance

w = X'u / u'u

p = X't / t't q = Y'u/u'u

Xres = X-tp' go for next LV

- T = matrix of X scores
- P = matrix of X loadings
- W = matrix of PLS X weights

Q= matrix of Y-loadings

Re-expressing as a regression model:

 $\mathbf{B}_{PLS} = \mathbf{W}(\mathbf{P}^{T}\mathbf{W})^{-1}\mathrm{diag}(\mathbf{b})\mathbf{Q}$

 $\hat{\mathbf{Y}} = \mathbf{X}\mathbf{B}_{PLS}$

How many latent variables ? (model dimensionality)

Is PLS model adequate ?

>Are there "anomalous" or "influential" samples ?

Which results to look at ? What plots to display ?

Which are the most "important" X variables to model Y ?

When/what preprocessing ?when/why do I need variables selection ?

PLS in practice: how many latent variables?

Empirical rules

1. Rule of thumb LV number <= 1/3 min(n,m)

3. look for end of structure/information In inner-relationships plots

PLS inner relation for subsequent components

 t and u scores are correlated until there is structure in X related to Y

• may choose 4-5 LVs on this consideration

•There are exceptions to this trend with spectral data

PLS in practice: how many latent variables?

The maximum number of components that can be calculated is equivalent to X-rank (in this case PLS converges to multilinear regression)

As in any regression model by adding more parameters fit increases

(error internal validation, excluded samples in turn)

the predictive capability (estimation of new/future sample) decreases

RMSE – total error

Regression – Error measures

Look at prediction errors

Root Mean Squared Error of Prediction

28

- * RMSEC is in the same scale of the variable/s y
- * R² varies between 0 e 1

RMSEC and R2 have to show inverse proportion, the lower the error, the higher R2

- always true if we compare the same data set (same samples, same Y)
- if R2 is used to compare different models same Y different number of samples; different Y;

we have to take into account **that R2 depends on y dispersion**, the more $(y-\bar{y})^2$ is small the larger R2 even if RMSEC is equal

$$R^{2} = 1 - \frac{RSS}{TSS} = 1 - \frac{\sum_{i=1}^{n_{TR}} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n_{TR}} (y_{i} - \overline{y}_{TR})^{2}}$$

Test set have different number of samples
 Ytest dispersion may differ form Ycal dispersion

$$\sum_{i=1}^{n \ tr} (y_i - \bar{y}_{TR})^2 = \sum_{i=1}^{n \ ts} (y_i - \bar{y}_{Ts})^2$$

so which TSS to use in $R_{\mbox{\scriptsize TEST}}$? Test or Training ?

Todeschini et al... show a correction which works using TSS training

$$R_{TEST}^2 = 1 - \frac{PRSS/n_{TEST}}{TSS/n_{TR}}$$

4. Estimate predictive capability (recommended)

1. Cross validation

- 2. Double CV
- 3. Bootstrap
- 4. Permutation test

In this case the significance is tested on predictive capability

1. one (LOO) or more objects (raws) are deleted from the data matrix

2. a PLS model (1 component) is calculated. The left out objects are projected on LV1, and the scores, t1, are estimated for the "out" objects. From the inner relation Y scores u1 are estimated. From the "PCA-like" model of Y knowing u1 the y of left out can be predicted

(or use the $Y=XB_{pls}$)

- The PLS model is applied to the left "out" objects and their y squared residuals are calculated.
- 3. Iterate 1-3 untill each objects (of the data set) has been left out once.
- 4. Calculates the Predicted Residuals Sum squares for all objects (PRESS1)

5. Iterate 1-5 for a model with 2 components, thus calculating PRESS2 and so on ... 06/09/22 Sete, France 1st SensorFINT Training School in Chemometrics Chemometrics

Cancelation schemes different from LOO:

Leave More Out

LOO is unique, LMO is not; so possible alternatives are:

- **Random groups**, e.g. of 5 objects each, are formed
- Apply CV procedure -
- Repeat 1-2 many times, e.g. 15 iterations
- Average sum of prediction error over iterations

Venetian blind

- Decide number of splits (e.g. 20 object 5 splits = 4 samples taken out at time)
- Take out every, e.g. 4th objects from 1 to n (better to sort y first)
- Apply CV procedure

Contiguous

2, 7, 12, 17

Outer CV, s_{OUT} = 3 segments

The prediction in "outer loop" may corrispond to a different number of a_{opt}

How to choose a final model (unique)?

- use the median of all *aopt*
- use the most frequent value of *aopt*

re-calculate (with all samples included) a model with this number of components

Resampling with repetition

for z=1: 1000 (>1000)

for i=1: N samples

Select randomly a sample put it in calibration set

end

- the calibration set has N samples
- some are repeated
- some are NOT present

build a model and predict the NOT present samples end

Probability to select a single sample in a single boot: 1/N Probability of NOT selecting """""""""""""""" Probability of NOT selecting in z boots : (1-1/N)^N for N large, probability tends to 0.37

number of total predictions: varies between 0 and z

06/09/22 Sète, France 1st SensorFINT Training School in Chemometrics

Permutation test

for p=1: 1000 (>1000)

randomly permute the Y calculate a model with the "fake" y store predictions, model parameters

end

Monitoring, Test set

- representative & independent from training
- replicates in the same set
- ¼ 1/2 of training

	Training set	
All data/samples	Nome X1 X2 X3 Y A -10.1993 0.1123 0.00E+00 3.208 C -11.0154 0.2147 0.0992 40.97 D 10.570 0.2147 0.0992 40.97	
Nome X1 X2 X3 Y A -10.1993 0.1123 0.00E+00 3.208 B -10.8763 0.1965 0.0618 24.3 C -11.0154 0.2147 0.0992 40.97 D -10.5789 0.2034 0.0326 16.93 E -10.5064 0.0987 0.00E+00 7.55 F -11.2242 0.2068 0.0467 25.07 G -11.4167 0.1192 0.00E+00 10.69	D -10.5789 0.2034 0.0326 16.93 E -10.5064 0.0987 0.00E+00 7.55 G -11.4167 0.1192 0.00E+00 10.69 H -10.6926 0.1104 0.00E+00 9.39 J -10.4286 0.1099 0.00E+00 7.82 K -9.3874 0.1313 0.00E+00 2.412 M -11.1289 0.1035 0.00E+00 7.7 O -10.8451 0.1972 0.0384 20.1 R -11.9889 0.1114 0.0677 27.2	If used to set model parameters (num LVs, select variables,)
H -10.6926 0.1104 0.00E+00 9.39 I -11.0131 0.1275 0.00E+00 4.78 J -10.4286 0.1099 0.00E+00 7.82 K -9.3874 0.1313 0.00E+00 2.412 L -11.7507 0.5089 0.00E+00 28.06 M -11.1289 0.1035 0.00E+00 7.7 N 0.60809 0.114 0.00E+00 7.7	S -10.4283 0.1106 0.00E+00 7 T -11.7283 0.5106 0.00E+00 23.24 W -11.6076 0.1121 0.0372 20.04	Not usable for estimating predictive capability
N -00.8650 0.111 0.002-00 8.09 O -10.8451 0.1972 0.0384 20.1 P -9.5514 0.1588 0.0552 14.2 Q -10.5411 0.2233 0.0384 17.64 R -11.9889 0.1114 0.0677 27.2 S -10.4283 0.1106 0.00E+00 7 T -11.7283 0.5106 0.00E+00 23.24 U -11.7545 0.1123 0.0458 20.3 V -9.3137 0.1337 0.00E+00 23.26 W -11.6076 0.1121 0.0372 20.04	Nome X1 X2 X3 Y4 B -10.8763 0.1965 0.0618 24.4 F -11.2242 0.2068 0.0467 25.00 I -11.0131 0.1275 0.00E+00 4.78 L -11.7507 0.5089 0.00E+00 28.06 N -10.6898 0.111 0.00E+00 8.09 P -9.5514 0.1588 0.0552 14.2 Q -10.5411 0.2233 0.0384 17.64 U -11.7565 0.1123 0.0458 20.3	predict

Goodness of fit : R² , RMSEC

should be compared with experimental error

DO REPLICATES

(eventually known from historical data Method)

If fit is higher than experimental error on Y then we are modeling noise!

Inspection of inner relation :

Inspection of residuals :

Y residuals vs. Y measured

is PLS model adequate?

which results to look at ?

γ

• check randomness:

• Plot X-residuals E vs Y, vs Order of spectra

aquisition,...

06/09/22 Sète, France

1st SensorFINT Training School in Chemometrics

FINT

40

• Plot Y- residuals vs Leverage

 Y Leverage: U(U^TU)⁻¹U^T (Y-block) how influential objects are in determining Y PCA-model

which results to look at ?

	X-Block LV	X-BLock Cumulative	Y-Block LV	y-Block Cumulative
1	83.16	83.16	6.69	6.69
2	4.97	88.13	40.98	47.67
3	7.58	95.71	4.42	52.09
4	2.11	97.82	8.37	60.46
5	0.99	98.81	3.23	63.68
6	0.37	99.18	3.55	67.23
7	0.24	99.43	1.64	68.86
8	0.11	99.54	1.13	69.99
9	0.21	99.75	0.30	70.29
10	0.03	99.78	2.24	72.54

- Fit: R², % Explained Variance of Y (as well, for each y-variable)
- Internal validation: RMSECV
- Contribution to the PLS model: %
 Explained Variance of X (as well for each x-variable)

• **Prediction capability: RMSEP** test set (truly independent)

2. Objects (samples, systems)

which results to look at?

٠

Trends- Correlation among X variables: X- Loadings ٠ plot **p**1, **p**2; ...

W₁, **W**₂, ..;

Variable importance: regression coefficients **B**_{PLS} ٠

Trends – Correlation among Y variables: Y- Loadings • plot **q**1, **q**2;.

Variable importance: Variable Influence on projection, VIP [1]

One of the parameter for ranking variables:

DEFINITION:

cp

 $VIP_{k}^{2} = \sum_{a} w_{ak}^{2} *SSY_{a} *K/(SSY_{tot,expl.} *A)$ **A**= number of LVs; K = number of X variables

VIP is derived from PLS weights weighted by how much of Y is explained in each model dimension; Since $\sum_{\mathbf{k}} \text{VIP}_{\mathbf{k}}^2 = \mathbf{K}$ the proposed threshold is 1.

Variable importance: Selectivity Ratio, SR [2]

$$t = Xw_{TP} = X \frac{b_{PLS}}{\|b_{PLS}\|} \qquad p^T = \frac{t^T X}{(t^T t)}$$
$$\widehat{X} = tp^T \qquad SR = var(\widehat{X}) / var(X \cdot \widehat{X})$$

Project on target component, y-correlated

SR express for each x-var the ratio among the variance explained by the target component and the residuals variance. The higher the more relevant

[1] Wold S, Johansson E, Cocchi M., 1993. PLS- Partial Least Squares Projections to Latent Structures, in: 3DQSAR in Drug Design. H. Kubinyi Ed., Leiden, Holland. [2] Chong et al. Chemom. Int. Lab. Syst. 78 (2005)) 103-112. [2] T. Rajalahti, R. Arneberg, F.S. Berven, K.M. Myhr, R.J. Ulvik, O.M. Kvalheim, Chemom. Int. Lab. Syst. . 95 (2009) 35-48.

which are most important variables?

• Interpreting Variable importance

1. Model

ORUM MUTIN

- Fit: R², % Explained Variance of Y (as well, for each y-variable) [R2YCUM, R2VY]
- **Predictive capability: RMSECV / RMSEP** Cross-Validation or monitoring set (Use also to choose the number of significant PLS components) [*Q2YCUM*..]
- **Contribution to the PLS model**: % Explained Variance of **X (as well for each x-variable)**
- Validation: RMSEP test set (truly independent)

2. Objects (samples, systems)

- in X-space: scores plots $\mathbf{t}_1, \mathbf{t}_2, \dots$
- in Y-space: scores plots $\mathbf{u}_1, \mathbf{u}_2, \ldots$
- inner relation U/T: scores plots $\mathbf{t}_1, \mathbf{u}_1, ; \mathbf{t}_2, \mathbf{u}_2, ; \dots$
- Check for outliers/trends
- distance from PC model of X: Plot X-residuals E
- distance from PC model of Y: Plot Y- residuals F
- check randomness: Plot Y-residuals vs Y, vs Order of spectra aquisition,..
- Leverage: T(T^TT)⁻¹T^T (X-block)/ U(U^TU)⁻¹U^T (Y-block) how influential objects are in determining X or Y models
- 3. Variables
- Correlation among X and Y: PLS weights, $\mathbf{w}_1, \mathbf{w}_2, ...$; regression cfs \mathbf{B}_{PLS}
- Trends- Correlation among X variables: X- Loadings plot p1, p2; ...
- **Trends Correlation among Y variables**: Y- Loadings plot **q**1, **q**2; ...

PLS ALGORITHMS a bit

More in references

06/09/22 Sète, France 1st SensorFINT Training School in Chemometrics

47

1. First PLS-component is calculated as the latent variable which has MAXIMUM COVARIANCE between the scores and modeled property y (or **Y scores**). Note that the criterion "covariance" is a compromise between maximum correlation coefficient (OLS) and maximum variance (PCA).

2. Next, the information (variance) of this component is removed from the **X**. This process is called PEELING or DEFLATION giving residual matrix **X** res (depending on algorithm **Y** can be deflated as well).

Actually it is a projection of the x-space on to a (hyper-)plane that is orthogonal to the direction of the found component.

3. From the residual matrix, the next PLS component is derived—again with maximum covariance between the scores and y (or **Y scores**).

4. This procedure is continued until no improvement of modeling y is achieved. The number of PLS components defines the complexity of the model

In the standard versions of PLS, the scores of the PLS components are uncorrelated; the corresponding loading vectors, however, are in general not orthogonal.

Consideration about Algorithms

A complicating aspect of most PLS algorithms is the stepwise calculation of the components. After a component is computed, the residual matrices for X (and eventually Y) are determined.

The next PLS component is calculated from the residual matrices and therefore its parameters (scores, loadings, weights) do not relate to X but to the residual matrices. However, equations exist, that relate the PLS-x-loadings and PLS-x-scores to the original x-data, and that also provide the regression coefficients of the final model for the original x-data.

In the following slides the most used Algorithms: NIPALS , SIMPLS are schematically reported

NIPAI S (1) initialize u_1 for instance by the first column of Y NIPALS (2) $w_1 = X^T u_1 / (u_1^T u_1)$ (3) $w_1 = w_1 / ||w_1||$ (4) $t_1 = X w_1$ (5) $c_1 = Y^{\mathrm{T}} t_1 / (t_1^{\mathrm{T}} t_1)$ terate (6) $c_1 = c_1 / \|c_1\|$ (7) $u_1^* = Yc_1$ (8) $u_{\Lambda} = u_1^* - u_1$ (9) $\Delta u = \boldsymbol{u}_{\Delta}^{\mathrm{T}} \boldsymbol{u}_{\Delta}$ (10) stop if $\Delta u < \varepsilon$ (with ε for instance set to 10⁻⁶); otherwise $u_1 = u_1^*$ and go to step 2 at convergence (11) $p_1 = X^{\mathrm{T}} t_1 / (t_1^{\mathrm{T}} t_1)$ (12) $q_1 = Y^T u_1 / (u_1^T u_1)$ (13) $d_1 = u_1^{\mathrm{T}} t_1 / (t_1^{\mathrm{T}} t_1)$

(14) $X_1 = X - t_1 p_1^T$ and $Y_1 = Y - d_1 t_1 c_1^T$ Go to next component calculation

Re-expressing for prediction $B = W(P^T W)^{-1} C^T$. $\implies \hat{Y} = XB_{PLS}$

50

INPUT $n \times p$ matrix X, $n \times m$ matrix Y, number of factors A.

 $\mathbf{Y}_0 = \mathbf{Y} - \mathbf{MEAN}(\mathbf{Y})$ $S = X'^* Y_0$ For a = 1, ..., Aq = dominant eigenvector of S'*S $r = S^*q$ $t = X^*r$ t = t - MEAN(t) $normt = SQRT(t'^{*}t)$ t = t / normtr = r/normt $p = X'^*t$ $q = Y_0^{\prime *} t$ $u = Y_0^* q$ v = pif a > 1 then $v = v - \mathbf{V}^*(\mathbf{V}'^*p)$ $u = u - T^{*}(T'^{*}u)$ end $v = v / \text{SQRT}(v'^* v)$ $S = S - v^*(v'^*S)$ Store r, t, p, q, u, and v into into R, T, P, Q, U, and V, respectively. End

 $B = R^*Q'$ $h = DIAG(T^*T') + 1/n$ $varX = DIAG(P'^*P)/(n-1)$ $varY = DIAG(Q'^*Q)/(n-1)$ regression coefficients leverages of objects variance explained for X variables variance explained for Y variables

center Y

cross-product

per dimension

center scores

compute norm

normalize scores

Y block factor weights X block factor weights

X block factor scores

adapt weights accordingly

initialize orthogonal loadings

make $v \perp$ previous loadings

make $u \perp$ previous t' values

normalize orthogonal loadings

deflate S with respect to current loadings

X block factor loadings

Y block factor loadings

Y block factor scores

1st SensorFINT Training School in Chemometrics

Vis-NIR spectra on 60 beer samples^{nm}acquired in transmission mode (transformed in absorbance) 40 calibration; 20 validation. Samples

Want to calibrate the "extract" concentration which is indicating the substrate potential for the yeast to ferment alcohol and serving as a taxation parameter.

54

going for 8 LVs ?

PLS 8LVs

Removing noisy wavelengths

NIR gasoline data

Y 5 analytes

1st SensorFINT Tra

Calibration Example: 2. Explorative PCA

Calibration Example: 3. inspect PLS model

PLS INNER RELATION

Calibration Example: 3. inspect PLS model

06/09/22 Sète, France 1st SensorFINT Training School III Continue Content of School III Content of School IIII

Calibration Example: 4. interpret PLS model

V4

67

X-variables weights

Calibration Example: 5. validate PLS model

Calibration Example: 5. validate PLS model

1st SensorFINT Training School in Chemometrics

- Plan for tomorrow:
 - PLS practical work (you) 2 data sets in chemflow
 - 1. Triglycerides 2. Apples
 - PLS for discrimination (PLS-DA) (me)
 - PLS practical work (you) 2 data sets in chemflow
 1. FeedMIR 2. FeedNIRmap

General workflow

